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Efforts in Pushing XAl Towards Scier‘

Why XAl is important ?

1 Key applications

* Finance, autonomous driving, medical diagnosis, military

[ Set standards for the Al safety and interpretability

Interpretability is a necessary
component for accountable Al

Fairness Privacy Accountability
. Security &
Ethics Transparency Safety

The growth of papers in XAl

© B [nterpretable Artificial Intelligence
E17 EE XAl

g I Explainable Artificial Intelligence
)
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Efforts in Pushing XAl Towards Science’

Topics of explaining DNNs

Semantic explanation

Which semantic How to
concepts are qguantify and
modeled and improve the

used for trustworthines
prediction s of a DNN

End-to-end Communicativ How to
learn e learning at evaluate
interpretable the semantic the
features level explanation

Explain classical
deep-learning How to debug DNNs
techniques (e.g., using mathematical
distillation, diagnosis of DNN
adversarial learning, features
compression)

How to bridge
Model and explain the architecture
the representation with the
capacity of a DNN knowledge

representation

Mathematical explanation
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XAl Topics

Semantic explanation

Which semantic How to

concepts are quantify and N7

evaluate

End-to-end Communicativ
learn e learning at
interpretable the semantic
features level

modeled and improve the
used for trustworthines
prediction s of a DNN

the
explanation
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XAl Topics

Explain classical
deep-learning
techniques (e.g.,

How to bridge
the architecture
with the
knowledge
representation

How to debug DNNs
using mathematical

Model and explain
the representation

capacity of a DNN diagnosis of DNN

features

distillation,
adversarial learning,
compression)

Mathematical explanation

88 - How does an accident happen?
. * What s the accident frequency if
the car has run safely for a year?
* Once peryear?
- * Once per ten years?
|« How to further boost the safety
even without accident records?

How to evaluate the generalization power of a DNN?

Why does a specific DNN architecture perform better than another architecture in a specific
task?

What is the relationship between the architecture and the knowledge.

What is the common essence of existing DL methods? How to further improve these methods?
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Problems of semantic explanations

g
Only self-consistency, no mutuality
between XAl methods

4 Many semantic explanations ) \ Very few theoretic foundations )

are still heuristic technologies, | 7] , \
rather than science Difficult to improve DNNs

\- b g

Lack of convincing enough
evaluation metrics

Explanation results conflict with each other.
Gradient Guided Back-

——— ! LRP Perturbation _DeepSHAP
~ Xlnput propagation I e . ;

input

. B

y
B 9
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Many existing attribution-based
explanations seem like edge detection

Integrated Gradient

Original Guided  Guided Integrated Gradients : Edge
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad Input Detector
F 0 e _
- &- - 8> > ’,J‘ﬁ“:. il l* - "t"
4T - W 'i-\..-.-r--«""'l
%' & o T 2o -~ =
af o X ._',':1:' . iy v
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Figure 1: Saliency maps for some common methods compared to an edge detector. Saliency

10
Kim et al. "Sanity Checks for Saliency Maps" in NIPS 2018
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Problems of explaining the representation power

Limited to certain assumptions
(shallow nets or infinite width)

4 ) N g
Analysis of t-he representation | _ Cannot provide semantic explanations

capacity of a DNN . J

- J 4 N

Cannot explain the emergence of
semantics in deep layers.

“Mathematic proof” is not equivalent to “understanding.”

Theorem 3 (Pitas et al. (2017)) Let B an upper bound on the £2 norm of any point in the input
domain. For any B,~,d > 0, the following bound holds with probability 1 — § over the training set:

[w; w2l

d 2 d 2 d ; m
L<i.i J (843 > i—1 Fin/Cit+ ln(4n2d)) [Tizs Wil Zj:l W +In(%)
= Ly

Y’m

24)
Pitas, K., Davies, M., and Vandergheynst, P. (2017). Pac-bayesian margin bounds for convolutional neural 11
networks. arXiv preprint arXiv:1801.00171
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Vision for XAl science

Although still far from science
— r I r e ——
Regional XAl metrics for Well-proved
explanation with representation theoretic
strict meanings ) | powerof DNNs ) {  foundation
« Strict meanings of * Mutuality between different metrics
visual concepts * Feature transferability

« Accurate attributions * Adversarial robustness/transferability

* Transformation complexity
* Generalization
* Disentanglement
* Feature information
* Interactions
* Essence of existing deep-learning methods
* Summarize effective factors
* Improve existing methods
* Guide deep learning
e Guide the design of network architecture
e Guide the learning process 12
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Outline

[0 XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts
[0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
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Strict and fine-grained explanations

[0 XAl studies and vision of XAl science

1 Explanation based on strict and fine-grained concepts
* Strictness
e Shapley values
* Game-theoretic interactions
* Fine-grained
e Explanatory graph

* Interpretable filters
O Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
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Strict and fine-grained explanations

[0 XAl studies and vision of XAl science

1 Explanation based on strict and fine-grained concepts
* Strictness
e Shapley values
 Game-theoretic interactions
* Fine-grained
e Explanatory graph

* Interpretable filters
0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
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Strict attributions: Shapley values

0 Game

 |Input variables = players

 Scalar network output/loss = total rewards of players in the game

[ Given a game, how to fairly allocate contribution of each player?
The Shapley value is considered as a method that fairly allocates the
reward to players.

— S| —=1)!|S|!
sy = Y (n = IST= DUSIE 6ty = ves))

n!
SCN\{i}
4 M
Orig. Deeplift é,; 3 ? v / /
- g(Z ) — ¢0 + E Cb?lzia
New DeeplLift g » p I.[" 1=1
" ot

¥

Lloyd S Shapley. “A value for n-person games”. In: Contributions
to the Theory of Games 2.28 (1953), pp. 307-317.

Scott M. Lundberg, and Su-In Lee, “A unified approach to
interpreting model predictions” in NeurlPS 2017

SHAP

Q
Lan

LIME

Q)
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Strict attributions: Shapley values

Question: Given a game, how to fairly allocate contribution of each player?
Several desirable axioms ensure the fairness of allocation:
* Linearity axiom

IfVvS € N,u(S) = v(S) + w(S), then ¢,,(i|N) = ¢,(i[N) + ¢, (i|N)
* Dummy axiom

IfvS € N\{i},v(S U {i}) = v(S) + v({i}), then ¢p(i|[N) = v({i}) — v(D)
*  Symmetry axiom

IfvS € N\{i},v(SU {i}) = v(SU{}), then p(i[N) = ¢(j|N)

« Efficiency axiom

ZiEN ¢(l|N) — U(N) _ U(@) Orig. Deeplift

New DeeplLift

SHAP

Q19911991199

[0 Remaining issues

* How to determine reasonable reference values?

* How to determine the reasonable partition of players?
Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.
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Strict and fine-grained explanations

[0 XAl studies and vision of XAl science

1 Explanation based on strict and fine-grained concepts
* Strictness
e Shapley values
* Game-theoretic interactions
* Fine-grained
e Explanatory graph

* Interpretable filters
0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
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Game-theoretic interactions

it'sa | remarkably solid and subtly satirical tour | de force .

this 1s a | good script, good dialogue | , funny even for adults

dull, lifeless, and amateurishly | assembled .

a warm but realistic meditation | on friendship , family and affection .

no telegraphing 1s too | obvious or simplistic | for this movie .

* The input words of a sentence (or the input pixels of an image) into a DNN usually
cooperate with each other, rather than work individually to make inferences.

* The cooperative input words (or pixels) have strong interactions.

* Shapley Interactions between two players (a,b): the change of the importance (Shapley value)
of a when b is present, w.r.t. the importance (Shapley value) when b is absent.

* Each word/pixel can be considered as player.

I(,)) = Gw/j(AIN) = ¢y jo; (iIN)

19
Zhang et al, “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021
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Multi-order interactions

The interaction of the m-th order: the interaction two players
considering collaborations with m contextual players

1" (i, ) & Esei,j,s1=m[AV(S, i, )]

Marginal contribution property

Vi, j € N,i # j, otV GEIN) — o7 )(3|N)— IEI\{ }[I“"‘)(i:j)]

Accumulation property

UGN = B[S T )]+ ¢ (IN)
JENN{}

Efficiency property
o(N) —0(@) =X 6@GIN) + 3 X [ meisk oo, )

ieN i€EN jeN\{i} k=0
Linearity property
IfVS C N u(S) = v(S) + w(S), then IS (i, 5) = 1™ (i, §) + I§™ (i, )
Independency property
If VS C N\ {i}, v(SU {i}) = v(S) + v({i}) thenVj € N, I(™) (i, j) =0
Symmetry property
IfVS € N v(SU{i}) = v(SU{j}), then VE € N\{4,5}, I" (i, k) = 10 (4, k)
Summability property o
GUTUGIN) =V EIN) = B[ 32 TUV @)= I(N\ih )= >0 (i) 20

JENN\{} m=0 JeEN\{i}



Efforts in Pushing XAl Towards Scie‘
Connections between interactions & visual concepts

O Small m: Low-order interactions (i, )

* Simple features, such as edges, colors

[0 Middle m: Middle-order interactions

 Complex features, such as complex structure

[ Large m: High-order interactions
* Global textures, outliers, noises

Style classification

Order

Style-transferred images

Interaction strength

21




Multivariate interactions

The Link between Interactions and the Network’s Semantic Representation

——explain the abnormal behavior of the network

* Multivariate interactions show extract prototype features to help us

understand the incorrect predictions of DNNs

maximum (prototypes towards incorrect predictions): if steven soderbergh ' s * solaris ' is a failure |if is a glorious failure |. predict: negative

minimum (prototypes towards correct predictions):  if steven soderbergh ' s * solaris ' is a failure |it is a glorious failure |. label: positive

maximum (prototypes towards incorrect predictions): the longer the movie goes . | the worse it gets . but it ' s actually pretty good |in the first few minutes.

minimum (prototypes towards correct predictions): the longer the movie goes . | the worse it gets . but it * s actually pretty good |in the first few minutes.

maximum (prototypes towards incorrect predictions): on the heels of the ring comes | a similarly morose and humorless horror movie | that. although
flawed . is to be commended for its straight - ahead approach to creepiness .
minimum (prototypes towards correct predictions): on the heels of the ring comes |a similarly morose and humorless horror movie | that . although
flawed . is to be commended for its straight - ahead approach to creepiness .

maximuin (prototypes towards incorrect predictions): on the heels of the ring comes a similarly morose and humorless horror movie that , although flawed ,

is to be commended for its straight - ahead approach to creepiness | .

minimum (prototypes towards correct predictions):  on the heels of the ring comes a similarly morose and humorless horror movie that , although flawed ,

is to be commended for its straight - ahead approach to creepiness | .

Zhang et al. “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021

predict: positive
label: negative
predict: negative

label: positive

predict: negative

label: positive
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Shapley Taylor Interaction Index

[0 Dhamdhere and Sundararajan defined a new type
of interactions between multiple variables.

1. Linearity axiom: I’I"(-) is a linear function; i.e. for two functions Fy, F» € GV,
TE(Fy + Fy) = TE(F)) + ZE(Fy) and Z&(c - Fy) = ¢ - T&(Fy).

2. Dummy axiom: If 7 is a dummy feature for F', i.e. F(S) = F(S\ i)+ F(i) for
any S C N with7 € S, then

(i) Z}F) = F(1)
(i1) forevery S C N withi € S, we have If;)i(F) =0
3. Symmetry axiom: for all functions F' € G, for all permutations 7 on N, :
T§(F) = Iig(nF)

where 7.5 := {m(7)|i € S} and the function 7v is defined by (7 F')(7S) = F(S5),
i.e. it arises from relabeling of features 1,.. ., n with the labels 7(1),...,m(n).

23
Dhamdhere et al., "The Shapley Taylor Interaction Index" in arXiv:1902.05622, 2019
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Strict and fine-grained explanations

[0 XAl studies and vision of XAl science

1 Explanation based on strict and fine-grained concepts
* Strictness
e Shapley values
 Game-theoretic interactions
* Fine-grained
e Explanatory graph

* Interpretable filters
0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
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Semantics in intermediate layers

Distribution of various
semantics encoded in
convolutional layers

Il object
[l scene
[ part
[CImaterial
[texture
I color

o o 30 30 D GO0 o0 P (P B P O P O
& 2 &L G PP B D ‘?'Q,%st?&ob
S A oA E O s E A A @ 5 @
QRIS oT 2707, Q% QT F QP QU &
SN N o Nt S (O N
CARIRCUICNC LN YRR N RO RN
NIESCICECIRC S SO Sl S S
NS YV & o @
> .2 L OQOQ’OO e °
g < S’ s
Zhou et al.

car (single unit 87)
o 1-. .
] [ Y
skEscraier ‘single unit 94i

Visualization of
semantic meanings of
convolutional filters
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25
“Interpreting Deep Visual Representations via Network Dissection” in IEEE Trans. on PAMI 2018
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Representing CNNs as an explanatory graph

[J Given a CNN that is pre-trained for object classification

 How many types of patterns (visual concepts) are memorized

by a convolutional filter of the CNN?

Distribution of
activationsin a
feature map

Fi |ter 1 | E -:‘?...\ - : A | .

26
Quanshi Zhang et al. “Extracting an Explanatory Graph to Interpret a CNN” in IEEE Trans. on PAMI 2020
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Representing CNNs as an explanatory graph (2)

 How many types of patterns (visual concepts) are

memorized by a convolutional filter of the CNN?
* Which concepts are co-activated to describe a part?

 What is the spatial relationship between two patterns?

These filters are co-activated
in certain area to represent
the head of a horse.

Feature maps of
different conv-layers

27
Quanshi Zhang et al. “Extracting an Explanatory Graph to Interpret a CNN” in IEEE Trans. on PAMI 2020
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Explanatory graph for a CNN

Head Neck
pattern pattern

oo

Mixture of Image

patternsin a Foatu_rc Maps Explanatory Parts corresponding to
feature map of of different graph each graph node

a channel conv-layers

The graph has multiple layers = multiple conv-layers of the CNN

Each node = a pattern of an object part

A filter may encode multiple patterns (nodes)—> disentangle a mixture of patterns from
the feature map of a filter

Each edge > co-activation relationships and spatial relationships between two patterns

28
Quanshi Zhang et al. “Extracting an Explanatory Graph to Interpret a CNN” in IEEE Trans. on PAMI 2020
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Task

[ Input: a pre-trained CNN

* Trained for classification, segmentation, or ...
* AlexNet, VGG-16, ResNet-50, ResNet-152, and etc.

e Without any annotations of parts or textures

[ Output: an explanatory graph

* WA TEP AT SR 0 PP AN, ° @ @
5 <3
Explanatory graph ¢
f 2
, for four conv-layers - v
& 7 .
Input of a VGG-16 e "
InnEgE network '
r ¢ RSN RRIPIIIIEN -
Feature maps Explanatory Part
of different graph e
conv-layers For clarity, we only show 10% of the patterns

29
Quanshi Zhang et al. “Extracting an Explanatory Graph to Interpret a CNN” in IEEE Trans. on PAMI 2020
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Disentangling object parts from raw filters

¢ 0 kBB P
Node 1 ; Filter 1

Node 2 F|ItE‘r 2

\ !‘_.u.'-‘.' .
T € TP = ~3
Node 3 . \ v ¥ Filter 3
I
5 2 -3
3 . ¢ \ "

Nodes in the explanatory graph Raw filters in the CNN

30
Quanshi Zhang et al. “Extracting an Explanatory Graph to Interpret a CNN” in IEEE Trans. on PAMI 2020
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Strict and fine-grained explanations

[0 XAl studies and vision of XAl science

1 Explanation based on strict and fine-grained concepts
* Strictness
e Shapley values
 Game-theoretic interactions
* Fine-grained
e Explanatory graph

* Interpretable filters
0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
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Background

Feature maps
of Filter 1

Feature maps
of Filter 2

Feature maps
of Filter 3

32
Quanshi Zhang et al. “Interpretable CNNs for Object Classification” in IEEE Trans. on PAMI, 2020
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Objective

Without additional part annotations, learn a CNN, where each
filter represents a specific part through different objects.

Filter A

: é.@*‘ )
e

Neural activations of 3 interpretable filters

33
Quanshi Zhang et al. “Interpretable CNNs for Object Classification” in IEEE Trans. on PAMI, 2020
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Force filters to represent object parts without part annotations

We add a loss to each channel to construct an interpretable layer

14

Masks

]
SVAALE

—
—
14
RelU
11
Conv
vl

Loss = Loss(y,y") + z Lossf(x)

task loss f filter loss

The filter loss boosts the mutual
Information between feature maps X
and a set of pre-defined part locations T.

Lossy = — MI(X;T) forfilter f

34

Quanshi Zhang et al. “Interpretable CNNs for Object Classification” in IEEE Trans. on PAMI, 2020
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Filter loss

] o)
I,
Loss = Loss(§,y") + 7 Lossg(x)
% task loss f filter loss
Iy ‘

—Loss;(x) = MI(X, T)= — H(T) + ={T~,T"}X) + Zp H(T* = {T }|X = =)
A constant Entropy of Inter- Entropy of the spatial
category activations distribution of activations
35

Quanshi Zhang et al. “Interpretable CNNs for Object Classification” in IEEE Trans. on PAMI, 2020
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Activation regions of interpretable filters

Al Filter (&

ﬁ Filter X m

36
Quanshi Zhang et al. “Interpretable CNNs for Object Classification” in IEEE Trans. on PAMI, 2020
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Outline

[0 XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts
[0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods

37



Efforts in Pushing XAl Towards Sciena

Outline

[ XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts

[0 Quantification of the representation power of a DNN
* Metric of layerwise and pixel-wise information discarding
* Metric of knowledge consistency

* Metric of feature/transformation complexity

[ Proof of mathematic essence of existing DL methods

38



Efforts in Pushing XAl Towards Scien(!
Layerwise and pixel-wise information discarding in DNNs

[J As a generic metric, the information encoded in
intermediate layers of DNNs

e Show information-processing behaviors in classic deep
models

* Explain existing deep learning techniques
* Network compression
* Knowledge distillation

 Modification of neural network architecture

Ma et al. “Quantifying Layerwise Information Discarding of Neural Networks” in arXiv:1906.04109, 2019
Guan et al. “Towards A Deep and Unified Understanding of Deep Neural Models in NLP” in ICML 2019
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Understanding DNNs as layerwise discarding of input information

O A DNN -2 layerwise discarding of input information
* Discard less foreground information

Enable reliable predictions
* Discard more background information

0 Measure two types of information discarding
 How much information of the input is used to compute the feature
 How much information of the input can be recovered from the feature

— C(lassification

Use 40% info of foreground pixels
Use 12% info of background pixels

Use 60% info of foreground pixels
Use 35% info of background pixels

Use 90% info of foreground pixels
Use 85% info of background pixels

40
Ma et al. “Quantifying Layerwise Information Discarding of Neural Networks” in arXiv:1906.04109, 2019
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Generality & coherency = enable comprehensive comparisons

Coherency Generality cfﬁgg f;zf__i;;t G:iig%y D CO h eren Cy . H oW tO ena b I e
Layers | Nets . .
Gradient-based No No No ';'& fa | r COm pa rISOnS between
Perturbation-based No No No . .
CAM-based No | No No Iaye rwise attentions?
ours Yes Yes Yes

Comparisons of different methods in terms of
generality and coherency. Our method provides
coherent results across layers and networks.

.- * Previous methods of

26 SID 3, 4 v Magnitude of computing the pixel-wise
28 / ET é heatmaps . .
et 152 ] —Grad-CAM x10* attention / saliency /
- RU £-§ / = Gradients 1;1{)3
1 3° CAM x10° ; ; ;
B @/5 BN} P RS- o= attribution / importance
# of conv layers <" # of conv layers e Grad-CAM

Signal magnitudes of layerwise heatmaps

* Gradients-based
Not enable fair e CAM

layerwise comparisons

* etc.
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Generality & coherency = enable comprehensive comparisons

Coherency Generality CAM Gradient  Grad-CAM
. N conv3-3 conv3-3 conv3-3
Layers | Nets
Gradient-based No No No
Perturbation-based No No No
CAM-based No No No
ours Yes Yes Yes

Comparisons of different methods in terms of
generality and coherency. Our method provides
coherent results across layers and networks.

26 SID E ”’G 10 Magnimde of
28 / e heatmaps
i e i = Grad-CAM x1304
- RU &g / == Gradients }2;10
=1 o 2 B
» - %"E . @‘/ CAM X].O
0 5 10 52 S 4 6§ 8 10 12 14

# of conv layers < # of conv layers

@lonal magnitudes of layerwise heatmaps

Enable fair layerwise Not enable fair

comparisons layerwise comparisons

Pixel-wise RU
conv4-3

Pixel-wise SID

conv3-3 conv4-3 convi-3 conv3-3 convi-3

Pixel-wise entropies of
input information

Pixel-wise entropies of
input reconstruction

Comparing the discarding of the foreground / background information
1. Enable fair layerwise comparisons within a specific DNN

2. Enable fair comparisons between specific layers of different DNNs
3. Enable fair comparisons between different DNNs learned using the same input

but for different tasks
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Analysis on Deep Neural Models in NLP

Visualization of word importance. CNN and LSTM usually use sub-sequences of
consecutive words for prediction, while BERT and Transformer select important

word individually.

SST-2 CoLA QQP
BERT _ BERT 2 B B | B BERT | |
Transformer . .EQ Transformer | Transformer
LSTM | LST™M LSTM
CNN . e . - CNN CNN
@ = g & _8 1) @ é = En H § » £ % i) E4 :’% 3 E ':—3
2 2 = o g H

Layerwise information discarding. There is no specific information-discarding
layer in the CNN. LSTM cannot distinguish important words. BERT and
Transformer usually discard meaningless words in the first third of layers.

BERT Transformer LSTM CNN

L1 [ K7
ik

K3

Kl

Pool

:I

oy
wn

[F] [7:H] r] - e . L s LoD VoSS QueE.e M
wEEEEERESLT: @ TLBERESESLE=2: 7 mmegagegt; = ZLEE2§REL7: B
OfE=8g3g = 'e) 228 ETE % O8f8<S8c5s8 ® £ O QLB £33 ® § O

g% (@R Sz4 s Q o= es g g £ g
7 B 2. B t @O gvg2f g ¢ 7 E 22 E E @ 2 =725 B 5 W
ke go g = wn = 25 =] i [S3] ol 50 - g — EU 2 =
= £ = E =
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Metric to quantify knowledge points

We propose a metric to quantify knowledge points in intermediate layer.

* Image regions that discarding much less information than most other regions.
Based on this metric, we verify there hypothesis for knowledge distillation
Compared with learning from scratch, knowledge distillation

e 1.learn more knowledge

Information

) _ Bottleneck
mainly learn mainly discard

new concepts task-irrelevant concepts

e 2.learn diverse knowledge

e 3.less detour in learning

foreground visual concepts

Visual concepts k=1 weight distance

Quantifying detours in learning
Visual concepts on

the foreground Epoch 0 Epoch | Epoch M Union

. Visual concepts on U U —

the background
ISy (DI D

p= = = 0.789
U, s, D

Cheng et al. “Explaining Knowledge Distillation by Quantifying the Knowledge” in CVPR 2020
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Outline

[ XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts

[0 Quantification of the representation power of a DNN
* Metric of layerwise and pixel-wise information discarding
* Metric of knowledge consistency

* Metric of feature/transformation complexity

[ Proof of mathematic essence of existing DL methods
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Knowledge consistency

1 As a generic metric, knowledge consistency can

* Quantify and evaluate the reliability of intermediate-
layer features of DNNs.
* Without any additional testing samples or annotations.

* Further boost the performance of DNNs without
additional annotations.

» Explain the success of existing deep-learning techniques

* Knowledge distillation
* Network compression

 Network adversarial attack

46
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Knowledge consistency

X, : an intermediate-layer feature of DNN A.
Xp: an intermediate-layer feature of DNN B.

If x5 can be reconstructed by x4 via

e a linear transformation » X, and xp are 0-order consistent
* one non-linear operation » x4, and xp are 1-order consistent
. non-linear operations » X, and xp are n-order consistent

" = go(x) + 22 go(x) = 2O 4 M 4oy (K

p(z) p(l)
E Eeeeee
X — Conv || Norm || RelU ‘é’ O > Branch 3
= s = — o -
X IENENES = é) e (,;RU 2o Branch 2
HISEN I EA e ]6)
X 2l IE Branch 1
X L 1L Branch 0
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Knowledge consistency with different orders

O If we trained multiple DNNs for the same task
* Consistent feature components = reliable knowledge

» Consistent feature components = boost the performance

O The following figure shows 0/1/2-order consistent feature components.
* A low-order consistent feature components - reliable features

* Inconsistent feature components = noises

e . — -

; "T Disentanged “ld Isomorphic Lyl

Net A WJ’ TQB(X) ' T" NetB e, &
S

s 0-order 1-order 2-order

i 0-order l-order 2-order . o b O-order 1l-order 2-order . Non-_
N featurej_ sornoxphlc ___feature _ _ isomorphic

_ iu e L mﬂ'-l =33

\*f
:".‘r:’-“;

Liang et al., “Knowledge Consistency between Neural Networks and Beyond” in ICLR, 2020
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Detect blind spots and unreliable features

O Given a weak DNN and a well-trained DNN for a same task, we can
disentangle and visualize the blind spots and unreliable features of the
weak DNN using knowledge consistency.

O Blind spots of the weak DNN are defined as feature components that are
encoded by the well-trained DNN, but are not encoded by the week DNN.

0 Unreliable features of the DNN are defined as feature components that are
encoded by the weak DNN, but are not encoded by the well-trained DNN.

. Features Features . Features Features
feI,l{;E i reconstructed by Elg}f} 5 e&tﬁ; 4 reconstructed by Elg}[g fe%ﬁr 5 reconstructed by ngqil&lage feIa{pLE i reconstructed by Ulgqetlélqé)&le
the strong DNN  *P the strong DNN °P the strong DNN the strong DNN

3

pa—

i# l:: _l_' i I-.-
3 Ad EeN;
AT A AR

(a) Bluld spots ot the weak DNN | (a) Unreliable/noisy features of the weak DNN

¥
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Stable of learning DNNs (overfitting risk)

[ Disentangling and quantifying inconsistent feature components
can be used to measure the instability of learning DNNs.
e Overfitting risk is low: DNNs can converge to the same knowledge

representation from different initialization states.

[ Given a relatively small training set, the learning of shallow
DNNs was usually more stable than the learning of deep DNNs.

convd @ AlexNet convS @ AlexNet Uconv4-3 @ VGG-16 conv5-3 @ VGG-16 last conv @ ResNet-34
0.086 0.116 0.124 0.196 0.776

Learning DNNs using different training data
convd @ AlexNet conv5 @ AlexNet conv4-3 @ VGG-16 conv5-3 @ VGG-16  last conv @ ResNet-34
0.089 0.155 0.121 0.198 0.275
Table 1: Instability of learning DNNs from different initializations and instability of learning DNNs
using different training data. Without a huge dataset for training, networks with more layers usually
suffered more from the over-fitting problem.
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Remove redundant features from pre-trained DNNs

O Input: Pre-trained DNNs——for various categories
* Fine-grained classification for both 200 bird categories and 120 dog categories

[ Task: Finetune DNNs——for several specific categories
* Fine-grained classification for either 200 bird categories or 120 dog categories
[ Objective: Detect and remove redundant features from pre-trained DNNs

during the finetune process, in order to improve the stability of intermediate-
layer features.

VGG-16 conv4-3 VGG-16 conv5-2

VOC-animal Mix-CUB Mix-Dogs | VOC-animal Mix-CUB Mix-Dogs
Features from the network A 51.55 44.44 15.15 51.55 44 .44 15.15
Features from the network B 50.80 45.93 15.19 50.80 45.93 15.19
20 4+ 20 4 2(2) 59.38 47.50 16.53 60.18 46.65 16.70

ResNet-18 ResNet-34

VOC-animal Mix-CUB  Mix-Dogs | VOC-animal Mix-CUB  Mix-Dogs
Features from the network A 37.65 31.93 14.20 3942 30.91 12.96
Features from the network B 37.22 32.02 14.28 35.95 27.74 12.46
20 + (1) 4 z(2) 53.52 38.02 16.17 49.98 33.98 14.21
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Outline

[ XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts

[0 Quantification of the representation power of a DNN
* Metric of layerwise and pixel-wise information discarding
* Metric of knowledge consistency

* Metric of feature/transformation complexity

[ Proof of mathematic essence of existing DL methods
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Efforts in Pushing XAl Towards Science’

Metric of feature/transformation complexity

[0 Definitions of feature complexity and transformation
complexity

1 Relationship between complexity and other metrics
* Reliability
* Generalization power

* Feature disentanglement



Efforts in Pushing XAl Towards SCiN

Definition of feature complexity

- Given an intermediate-layer feature of a DNN, the feature
complexity is defined as the minimum number of non-linear
layers that are required to compute the feature using another
benchmark DNN with a fixed width.

, Theoretical —+ Real feature
— . [ — [ .
[ = argmlnlr'q){q)( )(x) = C} c%?ri(glr::(ir’?y complexity

- Disentangle intermediate-layer features into components of
different complexity orders.

FO)=cWX)+c@Dx) 4+ cB(x) +Af

l 4 7 13 25 Af
e (O (x) ) : Simple component:
input mage x e R Global shape
1 ' 1) ‘; _F Complex component:
: 6 ' ' ' il d noi
e A | oy I Details and noises
| . e |l T ey . N
target feature f(x) R
Ren et al. Interpreting and Disentangling Feature Components of Various Complexity from 54

DNNs in arXiv:2006.15920, 2020
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Relationship between complexity and reliability

[ Increasing training data = boosting reliability, not the complexity

»

Boost feature
fr;)i];in f V commonness _ Improve ?
J performance
samples x Not significantly

increase complexity

2 ResNet-8 p ResNet-14 o ResNet-20 2 ResNet-32 - ResNet-44 complexity
g I g I B 5 I| = 200 order I
g | @ | S g | E 500 : 1-4 orders
[ un oo 5-7 orders
< I :g ! g £ 1000 [T 8-13 orders
s I I §2000 '©2000 | 14-25 orders
I o 5000 L, 1, * 5000 W 2643 orders
02 04 06 08F¢ 02 04 06 08FPc 02 04 06 08Fc 02 04 06 08FPc 02 04 06 08 P,SDI 50-97 orders

p(t).reli ResNet-8 p(z) reli ResNet-14 (Dreli ResNet-20 (Dreli ResNet-32 (D.reli ResNet-44

0.8 0’(8) O‘Z 0’; using random
06 ' ’ ’ n samplesin
0.6 CIFAR-10
) 0.6 0.6 0.6 — =200
— n=1500
04 0.4 0.4 0.4 0.4 \ — n=1000
— n=2000
7 13 25 4 13 25 4 13 25 4 13 25 4 13 25 — n=5000
[-th order I th order I th order I th order I th order
Ren et al. Interpreting and Disentangling Feature Components of Various Complexity from 55

DNNs in arXiv:2006.15920, 2020
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Relationship between complexity and effectiveness

[0 Feature components of the complexity of about the half
depth is the most effective (most influence to classification).

0 Complex features are not always effective.

(D (D)

"y Lo —a o
Il1912 a{ﬁectwe _ IQ&QCUVE
©0.8
Z
20.4
0.0

0oL —— — —
4 7 13 2549 97 4 7 13 2549 97

using random

() I-th order ) [-th order les i
—aeﬂ’ective— ‘aeffec iye ] n élallz'ﬂ ADRE?[;H
o . ™ i -
§08 2 0.6 — 1 =200
506 504 n = 500
<04 < — n=1000
x0.2 0.2 — n = 2000
T s o Ao o e o 1o o — n = 5000
4 7 13 2549 97 4 7 13 25 49 97
[-th order [-th order
Ren et al. Interpreting and Disentangling Feature Components of Various Complexity from 56

DNNs in arXiv:2006.15920, 2020
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Relationship between complexity and overfitting

[ For low-complexity feature components, the significance of
overfitting can be reduced by adding more training samples.

[ For high-complexity feature components, their overfitting
level is insensitive to the sample number.

«® «®

overfit 2 B Toverfit
320 ~
"a_".} = "ﬂ_".:»] 5 \
<10 <
w w
i @
00 0.5

4 7 13 2549 97 4 7 132549 97 using random

p[-th order (pyl-th order les |
25 %overfit —— ] A Xoverfit —— n samples in
N T40 CIFAR-10
X - A — n=200
21.5] %3-0 n = 500
@ ©2.0 — n = 1000
Q.51 x1.0 — n = 2000
4 7 13254997 4 7 13254997 =900
[-th order [-th order
Ren et al. Interpreting and Disentangling Feature Components of Various Complexity from 57

DNNs in arXiv:2006.15920, 2020
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Using reliable feature components to boost performance

[ Using the disentangled most effective components to boost
the classification accuracy by 5%.

using random n samples in CIFAR-10

.. 5 = ResNet8 > | — n=200
§§4 ResNet-14 53::. 4] n=500
8%, = ResNet20 08 | — n=1000
5%, — ResNet® 5 1 g — n=2000
@ o = ResNet44 ggE 0. = n=5000
S 1 g /
c® - N E g-Efl'
%Dﬂ 50010002000 5000 50000 = 4 7 13 25 49 97
#training samples 1-th order
using random n samples in CUB200-2011 using random n samples in Stanford Dogs
> 1 —n=2000 > __ 2 — n=1200
@2 w2
§L 0 n=3000 ST | n=2400
oy - = =4000 ég 0 = | = n=3600
58| —n=5000 5§ 4 = n=4800
2 ] g2
20 0 -81
2o 2o —10{. . . . ,
= 4 7 13 25 49 = 4 7 13 25 49
I-th order [-th order
Ren et al. Interpreting and Disentangling Feature Components of Various Complexity from 58

DNNs in arXiv:2006.15920, 2020
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Definition of the transformation complexity

0 Transformation complexity: the entropy of ReLU gating states.
« H(X) the entropy of gating states in all layers
* I(X;X) the mutual information of gating states and the input

* 1(X;Z;Y) the mutual information of gating states, the input, and the output

Cascaded netsrws
3.0
= 9 ;, 2.5
*f al
85 Z 50
7.5 epoch 154 epoch
6 100 200 300 4d0 500 6 100 200 300 400 500
ResNets = 0of =
] 0.81
281 — 0.7
— >
N W 06
T 249 — ResNet18-CelebA X 051 — ResNet18-CelebA
] ResNet18-VOC 0.41 ResNet18-VOC
2.0 = ResNet34-CelebA N = ResNet34-CelebA
| — ResNet34-VOC 03 — ResNet34-VOC
0 100 200 300 400 500 D 100 200 300 400 500
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Proof of the relationship between feature disentanglement

and the complexity

O Theoretically prove the negative relationship between
feature disentanglement and transformation complexity.

Entanglement: TC(Z,) = KL(p(a)|| [Tqap(a))

H(EZ) +TC(E) =€, € = —Eg, [logMap(o?)]

3
’0 LeNet-5 and MLP-B" 56| ¢ ResNet-20
‘ ;. :‘a . f :3 { :3
s NN o
= i N W
%, 62
~ 1.0] = .y
:'Q
"8 .04
0.5 e T
6.0 6.5 7.0 7.5 ] K] 03 0.5 0.7
H(Z) H(Z,

Ren et al. “Towards Theoretical Analysis of Transformation Complexity of ReLU DNNs” in arXiv
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Exploring the maximum complexity of a DNN

[ The transformation complexity of a DNN is limited due to
the optimization power of a DNN.

* The transformation complexity does not monotonously increase
along with the complexity of the task.

* The transformation complexity begins to be saturated and decrease
when the task is too complex.

101 —MLP-6 = MLP-12 10-
MLP-18 — MLP-24 M
81 8 2
@ 61 N ) 61
T, \% I 4
2 2,
— res MLP-6  —— res MLP-12
04 0l res MLP-18 —— res MLP-24
0 5 10 15 20 25 30 0 5 10 15 20 25 30
the order of the task complexity, n the order of the task complexity, n
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A loss to penalize the transformation complexity

[ A loss to penalize the transformation complexity

* |t also reduce the gap between training loss and the testing loss.

L L
Leomplexity = ) H(E) = ) {~Eq,[logp(an)]}
=1 =1

— ResMLP-CIFAR10
— ResNet20-CIFAR10
= ResNet32-CIFAR10

The complexity is positively
correlated to the loss gap.

13 = ResNet18-TinylmageNet
16} ResNet34-TinylmageNet
_Fraf
IE]' —LL.est - Ltrain
T
a SN G NN
o 1.0 2 \ .
2 100 \
2 nal 1 \
\ 05 pr——————— .\
0.6 - . L s . \ \ ——
05 104 w3 w02 -1 1w 0! O — = “_1 1 0.0l v - - "“_"-t'-
model complexity [(X;L;Y) 0 107 10 \ 10 10 0 107 10 JA 10 10

Ren et al. “Towards Theoretical Analysis of Transformation Complexity of ReLU DNNs” in arXiv
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Outline

[0 XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts
[0 Quantification of the representation power of a DNN

[0 Proof of mathematic essence of existing DL methods
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Outline

[0 XAl studies and vision of XAl science
[J Explanation based on strict and fine-grained concepts
[0 Quantification of the representation power of a DNN

[ Proof of mathematic essence of existing DL methods
* Essence of methods of boosting adversarial transferability

* Essence of the dropout operation

64



Game-theoretic Interactions

Mathematical >

Game theory: Shapley Value

>

generalization ability

interaction trees

semantic representation

Metric > Game-theoretic interactions

Definitions and Define multivariate / Define multi-order ~J  Derive desirable

axioms interactions interactioins \ axioms\
Application Explain the network’s Construct Explain the network’s Explain the adversarial

transferability

N

ﬁ. The relationship between]
| dropout and interactions
2. The relationship between
| the network’s I
|  generalization ability and|
L interactions )

Zhang et al. “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021

~

S S

|Extract hierarchical
|structures of

Iinteractions among |
words in a sentence |

—_——— ) <

How the interactions reveal
the semantics encoded in the
[DNN

rl. The negative correlation between\
the adversarial transferability and |

the interaction

2. A unified explanation of
transferability-boosting methods
3. Enhance the adversarial

transferability by penalizing
interactions




Game-theoretic Interactions

* The input words of a sentence (or the input pixels of an image) into a DNN usually
cooperate with each other, rather than work individually to make inferences.

* The cooperative input words (or pixels) have strong interactions.

it'sa | remarkably solid and subtly satirical tour de force .

this is a | good seript, good dialogue | , funny even for adults

dull, lifeless, and amateurishly = assembled .

a warm but realistic meditation | on friendship , family and affection .

no telegraphing is too | obvious or simplistic | for this movie .

Zhang et al. “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021
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The Link between Interactions and the Network’s Generalization Ability

* Theoretically prove that Dropout can decrease the strength of
interactions modeled by DNNs

* There is a negative correlation between the strength of interactions
and the generalization ability of the network

* The generalization ability of the network can be enhanced by directly

controlling the strength of interactions

Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View” in arXiv:2009.11729, 2020
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The Link between Interactions and the Network’s Generalization Ability
——relationships among dropout, interactions, and the generalization ability

Dropout can decrease the strength of interactions modeled by DNNSs

—~
Ja, xlO

1]

X

x 1072

[l

,_.

wio-dropout wi-dropout 3

®
—7
= x 1/0

7 ".‘m ?;_TXI Iy S— % 'l..o\-;/?.d.ro;_)otijti ;7 w/ dropout - - Z z 8;2
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c — RN 15 I aaropon! R — A Y N ] I 4
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VGG-11 VGG-19
The relationship between interactions
and the genera]ization abi"ty: Dataset Model | Ordinary Over-fitted
N | | MNIST |RN-44[217x10 7 [3.64x10 3
over-fitting=————>more interactions  Tjny-ImageNet | RN-34 | 2.57x 10~3 | 2.89 x 10~3
CelebA RN-34|6.46x 107" [ 1.17x 102

Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View” in arXiv:2009.11729, 2020
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The Link between Interactions and the Network’s Generalization Ability
directly suppress the interactions

Enhance the generalization ability of the network by directly
suppressing the interactions modeled by the network:

Loss = LoSSclassification + ALOSSinteraction

LOSSinteraction:Ei,jeN,i;éj HI(Z;])” :Ei,jEN,i#j { ZSCN\{?J i1 PShaple}’(S|N\{i:j}) [Af(saza.])] H

Based on the interactions, we improve the utility of dropout

* Control the utility of dropout by penalizing the strength of interactions, to
explicitly control the DNN between over-fitting and under-fitting.
* Solve the issue that dropout is not compatible with batch normalization

Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View” in arXiv:2009.11729, 2020
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The Link between Interactions and the Network’s Generalization Ability
—directly suppress the interactions

% 10~7 x 1077 * 1078
251 | 7o e = ey | 14 . 60 == I -
20] Interaction 60— £ o csification | | - [ nteract \ i Classifcation ;::20%
vl 50 Accuracy °I/ nieraction ) 10 40 Accuracy = 1=100.0
- H\ e A | At os] N\ 30 - ﬁ = gggg
Mogl — ' E W —————— —ﬁ'u_z —— fg — 1=10000
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E. 200.0 | 69.6 65.3 659 64.7 E 0.01 52.2  49.6 | 200.0 38.2 39.0 | $| 20.0 94.9 94.1 0.01 930 | 2
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Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View” in arXiv:2009.11729, 2020
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The negative correlation between the interaction ang = =
the adversarial transferability ﬂf(\%m

Theoretical foundations: Multi-step attacks vs. Single-step attacks
= Interaction: Multi-step attacks > Single-step attacks
Overfitting: Multi-step attacks > Single-step attacks!"

Empirical verification:

RN34-DN121 Corr: -0.69 RN34-DN201 Corr: -0.87 DN121-RN34 Corr: -0.87 DN121-RN152 Corr: -0.94 RN152-DN121 Corr: -0.95
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Essence: the reduction of interactions is the common
mechanism of previous transferability-boosting me

r

- Many previous transferability-boosting methods (mainly
based on intuitions) can be approximately explained as
the reduction of interactions.

= Theoretically prove the attack based on momentum (MI Attack) 2]

= Theoretically prove the attack based on smooth of gradients (VR Attack) B!
= Theoretically prove the attack based on skip connections (SGM Attack)

= Empirically verify the attack based on Translation-invariant (TI Attack) [

= Empirically verify the attack based on Input diversity (DI Attack) [©]

Proposition 1 Proposition 2 Proposition 3
The adversarial perturbatio he adversarial The adversarial

generated by the multi-step attack is given as perturbation generated by the multi-step perturbation generated by the multi-step
S = a T Vel (h(x + 8Lei), v), where 85, attack is given as 8%, = a X1t Gl(h(x + attack is given as 6/%,,; = a TTo Vel (h(x +
denotes the perturbation after the t-th step of 8t i), ¥)- The adversarial perturbation 8t i), ¥)- The adversarial perturbation
updating, and m is referred to as the total generated by the VR Attack is computed generated by the multi-step attack
number of steps. The adversarial perturbation as 67t = a Nt VI(h(x + 6%, y), where incorporating the momentum is
generated by the single-step attack is given as Ih(x + 650,9) = Eg 0,02 [L(h(x + 8 + computed as 673, = aymstgt . N
Ssingte = amV,(h(x),y). Then, the expectation of £),7)]. Perturbation units of 5™ tend to Perturbation units of &7; tend to exhibit
interactions between perturbation units in exhibit smaller interactions than 6™,,,;, i.e. smaller interactions than &), i.e.

SrTulti' 1Ea.,b [Iab(‘sr?:ulti)]' IS Iarger than [Ex]Eab[Iab(S;’;)] < ]Ex[Eab[Iab(srTulti)]- ]ExlEa,b [Iub(SZnni)] < ]ExlEa,b [Iub(snrgulti)]'
Ea,b[lab(6single)]r 'e ]Ea,b [Iab(drrnnulti)] = ' '

1Ea.,b [Iab (Ssingle)]-
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Application: Penalizing interactions to improve adversarfal ™ *
transferability M=

nAT

= With the additional interaction-reduction loss, the PGD attack
improves more than 10% adversarial transferability.

- Combining existing methods with the interaction-reduction loss,
the adversarial transferability is improved from 54.6%-98.8% to
70.2%-99.1%

Source | Method | VGG-16 RNI52Z  DN-201  SE-154  IncV3 IncV4  IncResV2
MI 80.1+0.5 73.0£2.3 77.7x0.5 48.9+0.8 46.2x1.2 39.9x0.5 34.8£2.5
VR 88.810.2 B6.4L1.6 87.9124 62.1=1.5 584+3.0 56.3£2.3 49.7+0.9
RN-34 SGM | 91.8+0.60 89.0£0.9 90.0+0.4 68.0xl14 63.9+0.3 58.2%l.1 54.6%x1.2
SCGM+IR | 94.7£0.6 91.7£0.6 934408 727204 68.9x09 od 113 61L.3x1.0
HybridIR | 96.5£0.1 94.9+0.3 95606 79.7+1.0 77.1+0.8 73.8+0.1 70.2+0.5

MI 70.3£0.6 - T4.8x1.4 51.7£0.8 47.1x0.9 40.5£1.6 306.8£2.7

VR 839134 91.120.9 70.0£3.7 63.1x0.9 58.8+0.1 56.2x1.3
RN-152 | SGM | 88.240.5 90.2+0.3 72714 632207 59.1£1.5 58.1=x1.2
SGM+IR | 92.0£1.0 92.5+0.4 79.3x0.1 69.6£0.8 006.2+1.0 063.6+0.9
HybridIR | 95.3£0.4 96.9+0.2 84.7+0.7 80.0=1.2 77.5£0.8 75.6%0.6

MI 83.0+4.9 72.0£07 91.5x0.2 58.4+2.6 54.6x1.6 492124 43.9+£1.5

VR 91.5+0.5 887105 98.81+0.2 75.1=1.3 T43x1.7 75.6+3.0 69.8%1.3
DN-121| SGM | 88.7+0.9 88.1=1.0 98.0£04 78.0+09 64.7£25 654+2.3 59.7£1.7
SGM+IR | 91.710.2 90404 94320.1 87.0+04 T8E8x1.3 79.5+£0.2 7T58+27
HybridIR | 96.9+£0.4 96.8+0.4 99.1+£0.4 90.9+0.5 884=0.8 87.8+08 87.1+£04

MI T1.3£0.8 748114 - 64.0£1.0 56.5+2.5 51.1+2.1 47.8£1.9

VR 87.3x1.1 90.4%=1.2 78.0x1.5 758x21 75.8£1.3 713xl.2
DN-201| SGM | 87.320.3 92.4%1.0 82.91+0.2 723303 71.3:0.6 68.81+0.5
SGM+IR | 89.5+0.9 91.8+0.7 87.3£1.2 82.5%0.8 80.3+0.3 81.5%0.5
HybridIR | 94.4+0.1 96.9+0.5 91.7+0.2 89.60.6 88.3+0.3 87.3+0.7

Wang et al. A Unified Approach to Interpreting and Boosting Adversarial Transferability. In arXiv:2010.04055, 2020
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Efforts in Pushing XAl Towards Sciena

Future of pushing XAl towards science

Although XAl is still far from science
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